IIT Madras find energy deficiency in some brain cells a major cause for Parkinson's

Researchers of the Indian Institute of Technology Madras have found that energy deficiency in certain cells in the human brain is a major cause for Parkinson’s disease (PD), a neurodegenerative disorder.

By Newsmeter Network  Published on  10 March 2021 10:13 AM GMT
IIT Madras find energy deficiency in some brain cells a major cause for Parkinsons

Chennai: Researchers of the Indian Institute of Technology Madras have found that energy deficiency in certain cells in the human brain is a major cause for Parkinson's disease (PD), a neurodegenerative disorder. This research could lead to scientists and other stakeholders focusing on improving the efficiency of energy delivery to these cells, which might finally lead to a cure for PD.

The findings of this research were published recently in the prestigious peer-reviewed international journal Nature Scientific Reports.

PD is the second most prominent neurodegenerative disease around the world after Alzheimer's. Currently, the medical community is mostly focused on the management of the disease. The innovative methodology and novel findings of IIT Madras researchers will help understand the pathophysiology of PD.

Although it is known that PD is caused by the loss of dopaminergic cells in substantia nigra pars compacta (SNc), the decisive cause of this inexorable cell loss has not clearly been elucidated before. The IIT Madras researchers developed a computational model that showed that energy deficiency might be a major cause of SNc cell loss in Parkinson's disease. The computational modelling was developed by Dr. Vignayanandam Ravindernath Muddapu, who recently completed his Ph.D at IIT Madras.

Elaborating on the important findings of this research, Prof. V. Srinivasa Chakravarthy, from the department of biotechnology of IIT Madras, said, "While existing treatments manage PD symptoms – sometimes with great effect – a cure demands an understanding of the root cause of SNc cell loss. This is the main question addressed in our work: What is the major underlying cause of SNc cell loss in PD?"

He further said, "It is quite remarkable that loss of neurons in a small nucleus like SNc can have wide-ranging, devastating effects in all the four major domains of brain function – sensory-motor, cognitive, affective, and autonomous. The sequence of the three computational studies suggests that metabolic deficiency within the basal ganglia circuit is the common underlying factor at the subcellular, cellular, and network level in PD. Thus, we have a reasonably comprehensive theory of the pathogenesis of Parkinson's disease."

This research was undertaken at IIT Madras Computational Neuroscience Laboratory, which aims to build a simplified model of the whole brain and use it to develop applications in medicine and engineering. The computational model showed that at the subcellular level, metabolic deficiency leads to changes like including alpha-synuclein aggregation, reactive oxygen species production, calcium elevation, and dopamine dysfunction, which are characteristic subcellular changes in Parkinson's disease.

Building on the platform of this research, Prof. Chakravarthy and his team plan to develop a therapeutic computational testbench for PD, wherein the proposed model of SNc will be the center of a larger framework. This will link cellular-level dysfunctions to behavioural-level abnormalities.



Next Story